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ABSTRACT 

First decribed in 1843, rumen ciliate protozoa were considered to be important in ruminant nutrition and 

contributed up to 50% of the total microbial biomass in the rumen. Recent studies on the presence or absence of 

rumenciliate protozoa concluded that rumen protozoa are important, but not essential in the rumen ecosystem 

and to the well-being of host animals. Despite the fact that elimination of rumen protozoa (defaunation) 

negatively affects ruminal fermentation, plant cell wall digestion, defaunation results in an increase in the 

efficiency of bacterial protein synthesis and the rate of nitrogen flow to the duodenum, leading to increase 

average daily gain of host animals. Importantly, this increase in livestock productivity could occur alongside a 

reduction in enteric methane emissions. 
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INTRODUCTION 

Rumen protozoa were first decribed in 1843 and considered to be important for the ruminant 

nutrition (Hungate, 1966). However, dispite the fact that rumen protozoa contribute to as 

much as half the total microbial biomass in the rumen and actively participate in plant cell 

wall digestion (Williams and Coleman, 1992), elimination of rumen protozoa increases 

microbial protein supply to the host, leading to increase average daily gain by 11% and results 

in a 10.5 to 13% decrease in enteric methane production (Newbold et al., 2015; Eugène et al., 

2004a). This paper aims at reviewing recent information on rumen ciliate protozoa and 

evaluating the role of protozoa on ruminal fermentation, digestion and enteric methane 

production. 

Classification of rumen ciliate protozoa  

Rumen protozoa are classified based on their cell morphology, and considered to be the 

simplest form of animal life, performing all the life processes as a eukaryotic cell (Dehority, 

2003; Esteban et al., 2014). Further, the majority of protozoa identified in the rumen are 

ciliate species, with more than 100 species of rumen ciliate protozoa having been identified in 

two major sub-classes; being the entodiniomorphid (Table 1) and the holotrich ciliates (Table 

2; Williams and Coleman, 1988, 1992). A few species of flagellate protozoa (Table 3) are also 

found in the rumen (Hungate, 1966; Williams and Coleman, 1992). However, the flagellates 

are easily confused with fungal zoospores (Dehority, 2003). In addition, flagellate protozoa 

are less numerous in terms of population density and have small body mass compared to the 

ciliates (Hungate, 1966; Clarke, 1977). Therefore, the flagellates are not well known and have 

not been the focus of attention in classifying or describing their activity and metabolism, 

leading to little information being available.  
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Table 1. Characteristics of some rumen entodiniomorphid protozoa                                              

(Williams and Coleman, 1988) 

Genus Dorsal cilia 
Obvious skeletal 

plates 

Macronucleus 

shape 

Length 

(µm) 

Width 

(µm) 

Entodinium 0 0 Various 22-29 11-68 

Eodinium 1 band ant.end
‡ 

0 Rod-shaped 32-60 20-40 

Diplodinium 1 band ant.end 0 Often bent rod 55-210 41-136 

Eremoplastron 1 band ant.end 1 narrow Often bent rod 45-500 21-260 

Eudiplodinium 1 band ant.end 1 narrow Hook shaped 105-198 56-120 

Ostracodium 1 band ant.end 1 wide Various 58-133 36-54 

Polyplastron 1 band ant.end 2 narrow Rod-shaped 123-205 98-123 

Diploplastron 1 band ant.end 
2 narrow close at 

post. End 
Rod-shaped 88-120 47-65 

Metadinium 1 band ant.end 
2 narrow occ. 

Fused 

Rod-shaped 2-

3 lobes 
110-288 61-165 

Epidinium 
1 band behind 

ant.end 
3 variable width Elongate 105-150 44-72 

Enoploplastron 1 band ant.end 
3 narrow close 

together 
Elongate 60-140 32-90 

Ophryoscolex 
1 band round 

3/4 of middle 
3 variable width Elongate 120-215 60-80 

Epiplastron 
1 band round 

3/4 of middle 
5 variables width Elongate 90-140 41-60 

Elytroplastron 1 band ant.end 
3 narrow (2 on 

right 1 on left) 
Elongate 110-160 67-97 

Caloscolex 
1 band round 

all middle 
1 complex Elongate 130-160 73-90 

Opisthotrichum 
1 band round 

1/3 of middle 
1 cylindrical Elongate 60-80 21-28 

Parentodium 0 0 Round 26-39 14-21 

Note:  
‡
 anterior end  
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Table 2. Characteristics of some rumen holotrich ciliates (Williams and Coleman, 1992) 

Species Morphology 
Size range, 

average (µm) 

Length: 

width range, 

average 

Macronucleus 

Isotricha prostoma 

Elongated 

ovoid to 

elipsoidal 

80-200×50-

120; 135×70 

1.69-2.55; 

2.03 
Elongated 

Isotricha 

intestinalis 

Elongated 

ovoid to 

elipsoidal 

90-200×45-

150; 110×60 

1.65-1.93; 

1.76 
Ovoid, 30×20 

Dasytricha 

ruminantium  
Ovoid 

35-75×20-40; 

57×27 

1.70-2.70; 

2.11 

Elongated/ellipsoidal, 

16-18×8-9 

Dasytricha 

hukuokaensis 
Ovoid 

120-180×68-

122; 151×95 

1.47-1.76; 

1.59 

Ellipsoildal, 24-

38×16-20; 31×18 

Oligoisotricha 

bubali 
Ovoid 

12-20×8-15; 

16×12 

1.07-1.60; 

1.30 
Spherical-elliptical 

Buetschlia parva Ovoid 
30-67×20-48; 

55×35 

1.58-2.38; 

1.91 
Spherical 

Buetschlia 

neglecta 
Ovoid 40-60×20-30 2.0 Spherical 

Buetschlia 

lanceolate 
Spear-shaded  48×20 2.4 Large 

Buetschlia 

omnivore 
Ovoid/spherical 

Variable; 35-

110×27-97 
 Elongated 

Buetschlia nana Ovoid 
17-21×12-

17;19×15 
 spherical 

Parabundleia 

ruminantium 
Ovoid 

37.5-50 × 

27.5-32.5; 

42.5 × 30.5 

1.25-1.54 
Elliptical, 16 µm 

long 

Polymorphella 

bovis 

Ovoid to bottle-

like 

26-37.5 × 20-

26; 34× 22 

1.30-1.80 

1.56 

Subspherical, 2.5 µm 

long 

Blepharoprosthium 

parvum 
Pyriform 

26-32 × 16-

20; 29 × 18 
 Spherical 

Blepharoconus 

krugerensis 

Ovoid with 

anterior 

knoblike 

protuberence 

30-65 × 21-

60; 46 × 35 

1.11-1.80; 

1.34 

Disc-shaped 7-15 × 

4-8; 11 × 5.5 µm  

Microcetus lappus Ovoid/elongate 
18-29 × 7.5-

18; 23.6 × 13 
 Spherical 
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Table 3. Characteristics of some rumen flagellate protozoa (Williams and Coleman, 1992) 

Species Shape Size  
Number of 

flagella 

Size of nuclear 

(µm) 

Chilomastix caprae Piriform 8.3×4.4 4  

Monocercomonas 

ruminantium 
Piriform 4.8×4.1 4 1.8×1.6 

Monocercomonoide 

bovis  
Elliptical 5.4×2.8 4 1.6×1.4 

Monocercomonoide 

caprae 
Elliptical 9×6 4 Large 

Pentatrichomonas 

hominis 
Elliptical 7.5×5.6 5 2.5×2.0 

Tetratrichomonas 

buttreyi 
Elliptical 5.3×4.8 4 2.0×1.7 

Trichomonas 

ruminantium 
Elliptical 12×10 3  

Anaerobic rumen ciliates are extremely abundant, ranging from 10
4
 to 10

6
 cells/mL of rumen 

liquor and are capable of engulfing bacteria and digesting plant materials such as cellulose 

and other structural carbohydrates (Finlay and Esteban, 2013; Esteban et al., 2014).       

Rumen protozoa account for as much as half the total microbial biomass in the rumen and up 

to 50% of total fermentation products (Williams and Coleman, 1992; Newbold et al., 2015). 

They actively participate in the ruminant digestion process. The absence of rumen protozoa, 

therefore, results in modifying ruminal digestion of plant cell walls and starch which are 

considered to be two main sources of energy supply for ruminants (Jouany and Martin, 1997). 

The ruminal ecosystem and environment can be slightly altered by the absence of rumen 

protozoa with significant influence on bacterial activity, affecting the retention time of the 

digesta, the concentrations and proportion of ruminal VFA and ammonia (NH3) concentration 

(Eugène et al., 2004a; Newbold et al., 2015) and therefore the supply of metabolites to the 

host, especially amino acids.  

Plant cell wall digestion  

Early studies on the role of rumen protozoa in ruminal digestion concluded that rumen 

protozoa did not digest plant cell components (Becker, 1929). In later years, enzymatic and 

microscopic evidence showed that cellulose was digested by entodiniomorphs (Hungate, 

1966). Further, the rumen ciliate protozoa were confirmed in their ability to colonize and 

damage plant tissues in studies with scanning electron microscopic technology. Epidinium 

crawley was found to cause primary degradation of plant tissues (Bauchop and Clarke, 1976) 

as it attached and damaged areas of the stem. Entodinium spp. and Ophryoscolex caudatum, 

however, rarely attached themselves to the large tissue fragments, but to damaged tissues 

exposed through fractures (Orpin, 1984).  
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Rumen protozoa produce fibre-degrading enzymes and the cellulolytic enzymes produced 

by rumen protozoa are distinguished from those of bacterial and fungal origin. This was 

observed by the characterization of protozoal genes encoding cellulase enzymes (Jouany 

and Martin, 1997). Further, polysaccharidase activities were greater in animals with ciliate 

protozoa compared to animals without ciliate protozoa (Santra and Karim, 2002; Eugène 

et al., 2004b). However, effects of rumen protozoa on ruminal digestion are inconsistent in 

the literature. There are reports of decreased organic matter (OM) digestibility (Eugène et 

al., 2004a; Newbold et al., 2015), and neutral-detergent fibre (NDF) and acid-detergent 

fibre (ADF) digestibility (Newbold et al., 2015) in the absence of rumen protozoa, 

probably due to the loss of protozoal fibrolytic activity. The absence of rumen protozoa, in 

contrast, increases cellulolytic ruminococci populations (Mosoni et al., 2011). This 

increased cellulolytic ruminococci in the absence of rumen protozoa may compensate for 

the loss of protozoal fibrolytic activity, and therefore the digestibility of OM, NDF and 

ADF was not different between defaunated and faunated animals (Jouany et al., 1995). 

Zeitz et al. (2012) observed no effects of individual ciliate protozoa such as Entodinium 

caudatum, Epidinium ecaudatum and Endiplodium maggii on whole tract digestibility of 

OM, NDF or ADF and suggested that ciliate protozoa may not always improve plant cell 

wall digestion.    

Carbohydrates and starch digestion   

Both holotrich and entodiniomorph ciliate protozoa are believed to ferment carbohydrates to 

meet their energy requirement. Holotrich ciliates utilise soluble carbohydrates, while 

Entodinium spp. and Epidinium spp. preferably digest starch (Williams, 1989). De Smet et al. 

(1992) showed that the total protozoal population density was nearly double in a high 

concentrate diet compared to a high roughage diet, with holotrich ciliates increasing 

accordingly. Entodinium spp. and Epidinium spp. have their largest numbers with a high 

concentrate diet.  

Wereszka and Michałowski (2012) found that Diploplastron affine possessed enzymes 

degrading starch and its derivatives. A protozoal cell extract for enzymatic studies found 

Diploplastron affine ciliate capable of digesting starch, released about 45 pmol VFA per 

protozoa per hour and utilised liberated energy for their energy requirement. The rate of starch 

degraded by Diploplastron affine is equivalent to 2.4 ± 0.47μmol/L glucose per mg protein 

per min and the degradation rate of maltose is approximately 0.05μmol/L glucose per mg 

protein per min (Wereszka and Michałowski, 2012). The ciliate Diploplastron affine is also 

found to digest insoluble 1,3-ß-glucans such as pachyman and 1,6-ß-glucans such as pustulan 

as energy substrates (Belzecki et al., 2012).   

Apart from being able to digest and utilise plant carbohydrates, rumen protozoa also ferment 

chitin of the rumen fungus. Morgavi et al. (1994) found Piromyces spp. strain OTS1 in 

monocultures or in the presence of rumen protozoa in vitro and reported that rumen protozoa 

adversely affect the growth of Piromyces spp. strain OTS1 and are able to digest fungal cell 

walls, resulting in 42% reduction of chitin which is a carbohydrate component of the fungal 

cell wall.  Diploplastron affine and Entodinium caudatum are found to possess a chitinolytic 
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enzyme (Miltko et al., 2015b) and utilise chitin as a source of energy for ciliate metabolism 

(Miltko et al., 2015a).   

Protein digestion and protozoal synthesis in the rumen 

Ruminants with protozoa in the rumen (faunated) support a higher ruminal NH3 concentration 

than do animals with rumen protozoa removed (defaunated), indicating that rumen protozoa 

degrade dietary proteins (Jouany, 1996) and engulf bacteria for their amino acid requirement 

(Coleman, 1989; Esteban et al., 2014). Ueda et al. (1975) who incubated the isotrich ciliates 

with soluble casein found that peptide-nitrogen and amino-nitrogen produced by the isotrich 

reached its highest level between 3 and 15 hours of incubation, accounting for 47% and 58% 

of non-protein nitrogen (NPN), respectively. Incubation of the ophryoscolecid ciliates with 

insoluble casein showed a peak of peptide-nitrogen at 3 hours, which accounted for 36% of 

NPN while amino-nitrogen increased linearly and accounted for 47% of NPN at 15 hours of 

incubation (Ueda et al., 1975).   

Protozoal nitrogen (N) can account for 53% of the total microbial N in the bovine rumen 

(Michałowski, 1979), which is about 24 to 46 g N (Leng et al., 1981). However, rumen 

protozoa contribute only 20% of the total microbial N entering the duodenum (Jouany et al., 

1988). The smaller protozoal biomass in the duodenum of the ruminants could be due to 65% 

to 74% of protozoa lysing and being degraded in the rumen (Leng, 1982; Ffoulkes and Leng, 

1988), suggesting only 24 to 35% of protozoa enter the lower digestive tract. The relatively 

high numbers of rumen protozoa that complete their life span in the rumen (Leng, 1982) and 

are retained within the omasum of ruminants (Czerkawski, 1987; Nguyen and Hegarty, 2019) 

mean rumen protozoa contribute a small proportion of the total microbial protein supply. The 

principal detrimental effect of rumen protozoa, therefore, may be competition for substrate 

with bacteria and engulfment and digestion of bacteria by protozoa, leading to decreased 

bacterial biomass and flow of protein in the duodenum (Leng, 1982).   

Ruminal lipid metabolism 

The role of rumen protozoa in bio-hydrogenation is not well defined and understood (Williams 

and Coleman, 1992), although they contribute significantly to flow of unsaturated fatty acids to 

the duodenum (Newbold et al., 2015; Yáñez-Ruiz et al., 2006). Yáñez-Ruiz et al. (2006) 

reported rumen protozoa accounted for between 30-40% of conjugated linoleic acid (CLA) and 

40% of vaccenic acid (VA) leaving the rumen. Mixed protozoa from the sheep rumen contain 

at least two to three times more unsaturated fatty acids, including CLA and VA, than do 

bacteria. Different species have different composition, with larger fibrolytic species such as 

Epidinium ecaudatum caudatum containing more than ten times more CLA and VA than some 

small species, including Entodinium nanellum (Devillard et al., 2006). This high level of 

polyunsaturated fatty acids in protozoal cells is a consequence of ingestion and/or engulfment 

of chloroplasts (Huws et al., 2009) and this chloroplasts uptake is specifically found in 

entodiniomorphids (Huws et al., 2012). Rumen protozoa, therefore appear to increase the 

duodenal flow of mono or polyunsaturated fatty acids by protecting chloroplasts unsaturated 

fatty acids from rumen bio-hydrogenation. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Y%C3%A1%C3%B1ez-Ruiz%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=17092374
https://www.ncbi.nlm.nih.gov/pubmed/?term=Y%C3%A1%C3%B1ez-Ruiz%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=17092374
https://www.ncbi.nlm.nih.gov/pubmed/?term=Devillard%20E%5BAuthor%5D&cauthor=true&cauthor_uid=17010229
https://www.ncbi.nlm.nih.gov/pubmed/?term=Huws%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=19583786
https://www.ncbi.nlm.nih.gov/pubmed/?term=Huws%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=19583786
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Factors affecting protozoal population densities in the rumen 

Rumen ciliate protozoa represent approximately 10
4
-10

6
 cells/mL of rumen contents 

(Dehority 2003; Esteban et al., 2014), but the concentration of rumen protozoa varies 

among animals and is dependent on many factors such as ruminant species, geographical 

location (Akbar et al., 2009), diet (Whitelaw et al., 1984), frequency of feeding and rumen 

pH (Clarke, 1977).   

Diet composition 

Ruminants fed highly digestible diets often show the largest populations of rumen protozoa 

(Hungate, 1966), while small populations of rumen protozoa are found in animals on low 

quality roughage diets (Abe et al., 1973). De Smet et al. (1992) fed sheep low and high 

concentrate diets containing 4.3% or 17.3% starch respectively, observing total protozoal 

population was nearly two-fold higher in the high concentrate diet. Rumen protozoa are able 

to reduce the rate of fermentation, contributing to the maintenance of a stable ruminal 

ecosystem when a high concentration of grain is suddenly introduced in the diet (Mackie et 

al., 1978). However, the protozoa are significantly affected by the environment’s acidity or 

alkalinity, with the protozoa unable to survive if rumen pH is above 7.8 or below 5.0 (Clarke, 

1977). Mackie et al. (1978) also found that the protozoal population decreased by 50-80% as 

rumen pH fell below 5.4. Cellulolytic ciliates almost disappeared when cattle were fed barley 

only (Kudo et al., 1990) and steers became protozoa-free for a period of a few weeks by ad 

libitum feeding of barley (Whitelaw et al., 1984).  

Dietary fatty acid supplement 

Capric acid (C10:0), lauric acid (C12:0) and myristic acid (C14:0) show strong protozoal 

toxicity and are useful rumen defaunating agents (Matsumoto et al., 1991). Matsumoto et al. 

(1991) observed that rumen protozoa, except Entodinium spp. were undetectable after 3 days 

of feeding 30 g of hydrated coconut oil (CO) containing 52% lauric acid. Feeding 250g of 

refined CO to beef heifers reduced rumen protozoal population by 62% (Jordan et al., 2006) 

and protozoal populations in beef heifers were decreased by 63% and 80% by 300 g/d CO 

after 45 and 75 days, respectively (Lovett et al., 2003).  Machmüller (2006) reported a 

reduction in rumen protozoa by 88 and 97% when feeding sheep with 3.5 and 7% CO, 

respectively. This suppressive effect of CO on rumen protozoa persisted 5 weeks after 

finishing feeding sheep with CO (Sutton et al., 1983). Rumen protozoa were reduced to half 

of the original population by cottonseed, with holotrich and cellulolytic protozoa apparently 

lost from the rumen of sheep and only Entodinium spp. remained (Dayani et al., 2007). 

Frequency of feeding 

The concentration of protozoa in the rumen liquor varies according to the daily feeding 

regime, reaching a maximum before feeding and decreasing by approximately 60-80% from 4 

to 12 hours after feeding (Michalowski and Muszyński, 1978). More specifically, the 

holotrich population in the fluid decreases for a period of 12 to 20 hours after feeding and the 

population returns to its original numbers within 4 to 6 hours pre-feeding, while the 

entodiniomorphid population in the fluid decreases for up to 16 hours after feeding and then 
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increases to the pre-feeding numbers (Williams, 1986). The increase of the holotrich 

population is mainly caused by the increase in dasytrichs while the isotrich population 

remains relatively low (Clarke, 1965). The highest concentration of rumen protozoa occurs 

when the animal is fed three or four meals per day rather than once (Bonhomme, 1990).    

Defaunating the rumen 

Rumen protozoa are important, but not essential in the rumen ecosystem and to the well-being 

of host animals (Williams and Coleman, 1992; Newbold et al., 2015). Elimination of rumen 

protozoa (defaunation) has led to reported increases in growth rate and liveweight gain of 

ruminants (Bird and Leng, 1978; Bird et al., 1979; Eugène et al., 2004a; Newbold et al., 2015) 

especially when the feed is deficient in protein relative to energy content (Nguyen et al., 

2015). In addition, rumen protozoa are significant hydrogen (H2) producers and synthesise 

mainly acetate and butyrate rather than propionate (Williams and Coleman, 1992). 

Defaunation is therefore expected to induce a greater proportion of propionate in the ruminal 

VFA (Eugène et al., 2004a), but this phenomenon is not always observed (Williams and 

Coleman, 1992; Newbold et al., 2015). The reduced CH4 emissions caused by defaunation 

also reported by several authors (Whitelaw et al., 1984; Hegarty, 1999; McAllister and 

Newbold, 2008; Newbold et al., 2015) may reflect reduced H2 availability by removing 

endosymbiotic methanogens (Finlay et al., 1994; Tokura et al., 1997; Finlay and Esteban, 

2013).  

Effect of defaunation on extent of ruminal fermentation 

An in vitro study by Yoder et al. (1966) reported cellulose digestion by rumen protozoa (7%), 

by bacteria (40%) and by protozoa and bacteria combined (exceeded 60%), showing a 

beneficial effect of rumen protozoa on cellulose digestion. Bauchop and Clarke (1976) 

observed rumen ciliate protozoa contribute to fibre digestion as they are capable of colonizing 

and damaging plant tissues. Cellulolytic, polysaccharide depolymerases and glycoside 

hydrolase enzymes produced by protozoa are significant contributors to cellulose and 

hemicellulose fermentation (Coleman, 1989). Therefore, the absence of rumen protozoa can 

lead to a 5-15% reduction in carbohydrate digestion of plant cell walls (Jouany et al., 1988).  

Removing protozoa reduces the rumen digestibility of fibre components of the diet (Newbold 

et al., 2015).  Ruminal digestion of NDF and ADF were reduced by 31% and 22% 

respectively by defaunation of sheep when fed a low soluble N diet (Ushida and Jouany, 

1990).  Defaunation also reduced degradation of a mainly chopped hay diet by up to 18% in 

sacco (De Smet et al., 1992). The absence of rumen protozoa did not affect rumen digestibility 

in lambs offered a diet with a high protein/energy ratio, but reduced total tract digestibility of 

OM (10%) and NDF (7%; Eugène et al., 2010).  In addition, Ushida and Jouany (1990) found 

that defaunated ruminants require an increased supply of NPN in order to maintain fibrolytic 

activity in the rumen compared to faunated animals. Although fibre digestion is moderately 

suppressed by defaunation, improving protein supply is far more important in growing 

animals with high protein demand and when protein is a limiting factor in the diet (De Smet et 

al., 1992). 
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Effect of defaunation on animal productivity 

A positive effect of defaunation on ruminants is the increased rumen bacterial biomass and 

passage of ruminal undegraded protein from the diet (Jouany, 1996). Duodenal N and 

duodenal CP/kg DMI outflow significantly increased after defaunation (Eugène et al., 2004a; 

Newbold et al., 2015), indicating an increase in the efficiency of microbial protein synthesis 

and leading to an average increased daily gain of 11%. 

In pen-feeding studies, defaunated lambs showed 18% faster growth rate and greater wool 

growth and wool fibre diameter over faunated or refaunated lambs offered a 50:50 concentrate 

and roughage ration (Santra et al., 2007). Birth weight of lambs born from defaunated ewes 

was 13% heavier than from faunated ewes on single-born lamb and pre-weaning growth rates 

were 10% and 14% heavier in lambs reared free of ciliate protozoa for both single and twin-

born lambs, respectively (Hegarty et al., 2008).  On high energy and low protein diets, 

defaunated cattle grew at a 43% faster rate than faunated cattle on the same intake (Bird and 

Leng, 1978) and lambs without rumen protozoa showed significantly increased growth rates 

and efficiency of utilisation of feed when fed a low level of protein. Wool growth increased 

by 50% compared to faunated animals that were fed a low protein diet (Bird et al., 1979). 

In grazing studies, Bird and Leng (1984) observed a greater rate of body weight gain (23%) 

and wool growth (19%) in defaunated compared to faunated lambs grazed on a green oats 

pasture. Protozoa-free lambs born from defaunated ewes were significantly (4-8%) heavier 

than were lambs born from faunated ewes measured from 2 months of age to 5 months of age 

and wool growth was also greater in protozoa-free lambs grazed on fescue dominant pastures 

(Hegarty et al., 2000). 

Effect of defaunation on enteric methane production 

As stated earlier, ciliate protozoa are significant producers of H2 and produce acetic and 

butyric acids rather than propionic acid (Williams and Coleman, 1992). Defaunation is 

generally associated with fermentation shifting to a greater proportion of propionic acid, 

therefore reducing the amount of CH4produced (Eugène et al., 2004a). 

The methanogens existing as endo- and ecto-symbionts with ciliate protozoa (Finlay et al., 

1994; Tokura et al., 1997; Finlay and Esteban, 2013) have been estimated to account for 37% 

of ruminal methane production (Finlay et al., 1994). The proportion of methanogens in the 

total bacterial population was lower in protozoa-free lambs, with 26% lower CH4 emissions 

compared to faunated lambs (McAllister and Newbold, 2008). While the archaeal community 

of methanogens in liquid and solid rumen contents were similar in faunated wethers, a lower 

proportion of methanogens occurred in the liquid phase with defaunation (Morgavi et al., 

2012). However, Mosoni et al. (2011) while observing a 20% reduction in CH4 emissions in 

short-term (10 week) and long-term (2 year) defaunated sheep, found methanogens per gram 

of DM of rumen content increased with defaunation while the diversity of the dominant 

methanogenic community was not changed. Therefore, it may not be reasonable to attribute 

the reduced CH4 production from defaunation to a loss of methanogens (Morgavi et al., 2012).  
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The presence of protozoa did not change enteric CH4 production in lambs raised with/without 

protozoa from birth (Hegarty et al., 2008) or from 10 to 25 weeks after chemical defaunation 

(Bird et al., 2008). Defaunation was associated with a reduced number of methanogens in 

rumen fluid, but did not reduce CH4 production (Morgavi et al., 2012; Kumar et al., 2013). 

This could be explained as defaunation induces changes in bacterial or fungal populations 

(Eugène et al., 2004a) and the absence of protozoa in the rumen leads to changes in the 

methanogen community (Morgavi et al., 2012).  

Ruminal acetogens were found able to grow on CO2 and H2, and produce acetate, but 

reductive acetogenesis was not likely to be occurring because of lower H2 affinity, making 

reductive acetogenesis unable to compete with methanogens in the rumen (Joblin, 1999). In 

normal fermentation, methanogens reduce H2 to a low level in which reductive acetogenesis is 

below detectable levels (Ungerfeld, 2015), but if pyruvate-derived acetate is produced when 

methanogenesis is inhibited, H2 may accumulate and stimulate reductive acetogenesis 

(Ungerfeld, 2013). Reductive acetogens established in the rumen lacking methanogens can 

replace methanogens as a sink for H2 in the rumen (Fonty et al., 2007). The reduced CH4 

emissions from defaunated animals associated with a rise in acetate proportion is a desirable 

condition in the rumen where reductive acetogens may be occurring.  

CONCLUSION 

Rumen ciliate protozoa are important in the ruminant nutrition, but they are not essential in 

the rumen ecosystem and to the well-being of host animals. Though elimination of rumen 

ciliate protozoa slighly decreases total VFA and plant cell wall digestion, defaunation largely 

impacts on the reduced NH3 concentration, CH4 production in the rumen and increased 

microbial protein supply to the hosts. 
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